by Peng, Y. Y., Dellea, G., Minola, M., Conni, M., Amorese, A., Di Castro, D., De Luca, G. M., Kummer, K., Salluzzo, M. and Sun, X., Zhou, X. J., Balestrino, G., Le Tacon, M., Keimer, B., Braicovich, L., Brookes, N. B. and Ghiringhelli, G.
Abstract:
In high-T-c superconductors the magnetic and electronic properties are determined by the probability that valence electrons jump virtually from site to site in the CuO2 planes, a mechanism opposed by on-site Coulomb repulsion and favoured by hopping integrals. The spatial extent of the latter is related to transport properties, including superconductivity, and to the dispersion relation of spin excitations (magnons). Here, for three antiferromagnetic parent compounds (single-layer Bi2Sr0.9La1.1CuO6+delta, double-layer Nd1.2Ba1.8Cu3O6 and infinite-layer CaCuO2) differing by the number of apical atoms, we compare the magnetic spectra measured by resonant inelastic X-ray scattering over a significant portion of the reciprocal space and with unprecedented accuracy. We observe that the absence of apical oxygens increases the in-plane hopping range and, in CaCuO2, it leads to a genuine three-dimensional (3D) exchange-bond network. These results establish a corresponding relation between the exchange interactions and the crystal structure, and provide fresh insight into the materials dependence of the superconducting transition temperature.
Reference:
Influence of apical oxygen on the extent of in-plane exchange interaction in cuprate superconductors (Peng, Y. Y., Dellea, G., Minola, M., Conni, M., Amorese, A., Di Castro, D., De Luca, G. M., Kummer, K., Salluzzo, M. and Sun, X., Zhou, X. J., Balestrino, G., Le Tacon, M., Keimer, B., Braicovich, L., Brookes, N. B. and Ghiringhelli, G.), In NATURE PHYSICS, NATURE PUBLISHING GROUP, volume 13, 2017.
Bibtex Entry:
@article{ ISI:000417049400020,
Author = {Peng, Y. Y. and Dellea, G. and Minola, M. and Conni, M. and Amorese, A.
   and Di Castro, D. and De Luca, G. M. and Kummer, K. and Salluzzo, M. and
   Sun, X. and Zhou, X. J. and Balestrino, G. and Le Tacon, M. and Keimer,
   B. and Braicovich, L. and Brookes, N. B. and Ghiringhelli, G.},
Title = {{Influence of apical oxygen on the extent of in-plane exchange
   interaction in cuprate superconductors}},
Journal = {{NATURE PHYSICS}},
Year = {{2017}},
Volume = {{13}},
Number = {{12}},
Pages = {{1201+}},
Month = {{DEC}},
Abstract = {{In high-T-c superconductors the magnetic and electronic properties are
   determined by the probability that valence electrons jump virtually from
   site to site in the CuO2 planes, a mechanism opposed by on-site Coulomb
   repulsion and favoured by hopping integrals. The spatial extent of the
   latter is related to transport properties, including superconductivity,
   and to the dispersion relation of spin excitations (magnons). Here, for
   three antiferromagnetic parent compounds (single-layer
   Bi2Sr0.9La1.1CuO6+delta, double-layer Nd1.2Ba1.8Cu3O6 and infinite-layer
   CaCuO2) differing by the number of apical atoms, we compare the magnetic
   spectra measured by resonant inelastic X-ray scattering over a
   significant portion of the reciprocal space and with unprecedented
   accuracy. We observe that the absence of apical oxygens increases the
   in-plane hopping range and, in CaCuO2, it leads to a genuine
   three-dimensional (3D) exchange-bond network. These results establish a
   corresponding relation between the exchange interactions and the crystal
   structure, and provide fresh insight into the materials dependence of
   the superconducting transition temperature.}},
Publisher = {{NATURE PUBLISHING GROUP}},
Address = {{MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND}},
Type = {{Article}},
Language = {{English}},
Affiliation = {{Ghiringhelli, G (Corresponding Author), Politecn Milan, Dipartimento Fis, Piazza Leonardo da Vinci 32, I-20133 Milan, Italy.
   Ghiringhelli, G (Corresponding Author), Politecn Milan, Dipartimento Fis, CNR, SPIN, Piazza Leonardo da Vinci 32, I-20133 Milan, Italy.
   Peng, Y. Y.; Dellea, G.; Conni, M.; Braicovich, L.; Ghiringhelli, G., Politecn Milan, Dipartimento Fis, Piazza Leonardo da Vinci 32, I-20133 Milan, Italy.
   Minola, M.; Le Tacon, M.; Keimer, B., Max Planck Inst Festkorperforsch, Heisenbergstr 1, D-70569 Stuttgart, Germany.
   Amorese, A.; Kummer, K.; Brookes, N. B., European Synchrotron, ESRF, 71 Ave Martyrs, F-38043 Grenoble, France.
   Di Castro, D.; Balestrino, G., Univ Roma Tor Vergata, CNR, SPN, Via Politecn 1, I-00133 Rome, Italy.
   Di Castro, D.; Balestrino, G., Univ Roma Tor Vergata, Dipartimento Ingn Civile & Ingn Informat, Via Politecn 1, I-00133 Rome, Italy.
   De Luca, G. M., Univ Napoli Federico II, Dipartimento Fis E Pancini, Complesso Monte St Angelo,Via Cinthia, I-80126 Naples, Italy.
   De Luca, G. M.; Salluzzo, M., CNR, SPIN, Complesso MonteSantangelo,Via Cinthia, I-80126 Naples, Italy.
   Sun, X.; Zhou, X. J., Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China.
   Le Tacon, M., Karlsruhe Inst Technol, Inst Solid State Phys IFP, D-76021 Karlsruhe, Germany.
   Braicovich, L.; Ghiringhelli, G., Politecn Milan, Dipartimento Fis, CNR, SPIN, Piazza Leonardo da Vinci 32, I-20133 Milan, Italy.}},
DOI = {{10.1038/NPHYS4248}},
ISSN = {{1745-2473}},
EISSN = {{1745-2481}},
Keywords-Plus = {{PAIRING INTERACTION; SPIN-WAVES; TEMPERATURE; EXCITATIONS}},
Research-Areas = {{Physics}},
Web-of-Science-Categories  = {{Physics, Multidisciplinary}},
Author-Email = {{giacomo.ghiringhelli@polimi.it}},
ResearcherID-Numbers = {{, Le Tacon Matthieu/D-8023-2011
   peng, yingying/K-1805-2015
   Amorese, Andrea/AAA-7510-2020
   Brookes, Nicholas B/C-6718-2019
   salluzzo, marco/C-5919-2009
   Ghiringhelli, Giacomo/D-1159-2014
   }},
ORCID-Numbers = {{, Le Tacon Matthieu/0000-0002-5838-3724
   peng, yingying/0000-0002-2657-3590
   Brookes, Nicholas B/0000-0002-1342-9530
   salluzzo, marco/0000-0001-8372-6963
   Ghiringhelli, Giacomo/0000-0003-0867-7748
   Braicovich, Lucio/0000-0001-6548-9140
   DI CASTRO, DANIELE/0000-0002-0878-6904
   Minola, Matteo/0000-0003-4084-0664}},
Funding-Acknowledgement = {{MIUR Italian Ministry for ResearchMinistry of Education, Universities
   and Research (MIUR); Fondazione CARIPLO (project ERC-P-ReXS)Fondazione
   Cariplo {[}2016-0790]; Alexander von Humboldt FoundationAlexander von
   Humboldt Foundation; National Natural Science Foundation of
   ChinaNational Natural Science Foundation of China (NSFC) {[}11334010,
   11534007]; National Key Research and Development Program of China
   {[}2016YFA0300300]; Chinese Academy of SciencesChinese Academy of
   Sciences {[}XDB07020300]}},
Funding-Text = {{This work was supported by MIUR Italian Ministry for Research through
   project PIK Polarix and by Fondazione CARIPLO (project ERC-P-ReXS,
   2016-0790). M.M. was partially supported by the Alexander von Humboldt
   Foundation. X.J.Z. is grateful for financial support from the National
   Natural Science Foundation of China (11334010 and 11534007), the
   National Key Research and Development Program of China (2016YFA0300300)
   and the Strategic Priority Research Program (B) of Chinese Academy of
   Sciences (XDB07020300). The authors acknowledge insightful discussions
   with O. Andersen, E. D. Torre, T. Devereaux, C. Di Castro, M. Grilli and
   K. Wohlfeld. The experimental data were collected at beam line ID32 of
   the European Synchrotron (ESRF) in Grenoble (F) using the ERIXS
   spectrometer designed jointly by the ESRF and Politecnico di Milano.}},
Number-of-Cited-References = {{47}},
Times-Cited = {{39}},
Usage-Count-Last-180-days = {{7}},
Usage-Count-Since-2013 = {{85}},
Journal-ISO = {{Nat. Phys.}},
Doc-Delivery-Number = {{FO7JH}},
Unique-ID = {{ISI:000417049400020}},
DA = {{2020-12-22}},
}

Categories:

Tags:

Comments are closed