by Benckiser, E., Fels, L., Ghiringhelli, G., Sala, M. Moretti and Schmitt, T., Schlappa, J., Strocov, V. N., Mufti, N., Blake, G. R., Nugroho, A. A., Palstra, T. T. M., Haverkort, M. W. and Wohlfeld, K. and Grueninger, M.
Abstract:
We report on the observation of orbital excitations in YVO3 by means of resonant inelastic x-ray scattering (RIXS) at energies across the vanadium L-3 and oxygen K absorption edges. At the V L3 edge, we are able to resolve the full spectrum of orbital excitations up to 5 eV. In order to unravel the effect of superexchange interactions and the crystal field on the orbital excitations, we analyzed the energy and temperature dependence of the intra-t(2g) excitations at 0.1-0.2 eV in detail. While these results suggest a dominant influence of the crystal field, peak shifts of about 13-20 meV observed as a function of the transferred momentum q parallel to a reflect a finite dispersion of the orbital excitations. This is puzzling since theoretical models based on superexchange interactions predict a dispersion only for q parallel to c. Furthermore, we demonstrate that RIXS at the O K edge is very sensitive to intersite excitations. At the O K edge, we observe excitations across the Mott-Hubbard gap and an additional feature at 0.4 eV, which we attribute to two-orbiton scattering, i.e., an exchange of orbitals between adjacent sites. Altogether, our results indicate that both superexchange interactions and the crystal field are important for a quantitative understanding of the orbital excitations in YVO3.
Reference:
Orbital superexchange and crystal field simultaneously at play in YVO3: Resonant inelastic x-ray scattering at the V L edge and the O K edge (Benckiser, E., Fels, L., Ghiringhelli, G., Sala, M. Moretti and Schmitt, T., Schlappa, J., Strocov, V. N., Mufti, N., Blake, G. R., Nugroho, A. A., Palstra, T. T. M., Haverkort, M. W. and Wohlfeld, K. and Grueninger, M.), In PHYSICAL REVIEW B, AMER PHYSICAL SOC, volume 88, 2013.
Bibtex Entry:
@article{ ISI:000327159700001,
Author = {Benckiser, E. and Fels, L. and Ghiringhelli, G. and Sala, M. Moretti and
Schmitt, T. and Schlappa, J. and Strocov, V. N. and Mufti, N. and Blake,
G. R. and Nugroho, A. A. and Palstra, T. T. M. and Haverkort, M. W. and
Wohlfeld, K. and Grueninger, M.},
Title = {{Orbital superexchange and crystal field simultaneously at play in YVO3:
Resonant inelastic x-ray scattering at the V L edge and the O K edge}},
Journal = {{PHYSICAL REVIEW B}},
Year = {{2013}},
Volume = {{88}},
Number = {{20}},
Month = {{NOV 13}},
Abstract = {{We report on the observation of orbital excitations in YVO3 by means of
resonant inelastic x-ray scattering (RIXS) at energies across the
vanadium L-3 and oxygen K absorption edges. At the V L3 edge, we are
able to resolve the full spectrum of orbital excitations up to 5 eV. In
order to unravel the effect of superexchange interactions and the
crystal field on the orbital excitations, we analyzed the energy and
temperature dependence of the intra-t(2g) excitations at 0.1-0.2 eV in
detail. While these results suggest a dominant influence of the crystal
field, peak shifts of about 13-20 meV observed as a function of the
transferred momentum q parallel to a reflect a finite dispersion of the
orbital excitations. This is puzzling since theoretical models based on
superexchange interactions predict a dispersion only for q parallel to
c. Furthermore, we demonstrate that RIXS at the O K edge is very
sensitive to intersite excitations. At the O K edge, we observe
excitations across the Mott-Hubbard gap and an additional feature at 0.4
eV, which we attribute to two-orbiton scattering, i.e., an exchange of
orbitals between adjacent sites. Altogether, our results indicate that
both superexchange interactions and the crystal field are important for
a quantitative understanding of the orbital excitations in YVO3.}},
Publisher = {{AMER PHYSICAL SOC}},
Address = {{ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA}},
Type = {{Article}},
Language = {{English}},
Affiliation = {{Benckiser, E (Corresponding Author), Univ Cologne, Inst Phys 2, Zulpicher Str 77, D-50937 Cologne, Germany.
Benckiser, E.; Fels, L.; Grueninger, M., Univ Cologne, Inst Phys 2, D-50937 Cologne, Germany.
Benckiser, E.; Haverkort, M. W., Max Planck Inst Solid State Res, D-70569 Stuttgart, Germany.
Ghiringhelli, G.; Sala, M. Moretti, Politecn Milan, Dipartimento Fis, CNR SPIN, I-20133 Milan, Italy.
Sala, M. Moretti, European Synchrotron Radiat Facil, F-38043 Grenoble, France.
Schmitt, T.; Schlappa, J.; Strocov, V. N., Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland.
Schlappa, J., BESSY II, Inst Methoden & Instrumentierung Synchrotronstrah, D-12489 Berlin, Germany.
Mufti, N.; Blake, G. R.; Nugroho, A. A.; Palstra, T. T. M., Univ Groningen, Zernike Inst Adv Mat, Dept Chem Phys, NL-9747 AG Groningen, Netherlands.
Mufti, N., State Univ Malang, Dept Phys, Malang 65145, Indonesia.
Nugroho, A. A., Inst Teknol Bandung, Jurusan Fis, Bandung 40132, Indonesia.
Haverkort, M. W., Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada.
Wohlfeld, K., IFW Dresden, Inst Theoret Solid State Phys, D-01069 Dresden, Germany.
Wohlfeld, K., Stanford Univ, Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94025 USA.
Wohlfeld, K., SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA.}},
DOI = {{10.1103/PhysRevB.88.205115}},
Article-Number = {{205115}},
ISSN = {{2469-9950}},
EISSN = {{2469-9969}},
Keywords-Plus = {{TRANSITION-METAL OXIDES; EMISSION-SPECTROSCOPY; ELECTRONIC-STRUCTURE;
SPIN; EXCITATIONS; PHYSICS; STATES}},
Research-Areas = {{Materials Science; Physics}},
Web-of-Science-Categories = {{Materials Science, Multidisciplinary; Physics, Applied; Physics,
Condensed Matter}},
Author-Email = {{e.benckiser@fkf.mpg.de
grueninger@ph2.uni-koeln.de}},
ResearcherID-Numbers = {{Haverkort, Maurits W./D-2319-2009
Institute, Zernike/W-7033-2019
Palstra, Thomas TM/K-1961-2013
Moretti, Marco/AAF-9255-2019
Benckiser, Eva/R-6973-2019
Ghiringhelli, Giacomo/D-1159-2014
Nugroho, Agustinus Agung/E-5977-2010
Wohlfeld, Krzysztof/Q-2351-2019
Sala, Marco Moretti/H-1034-2014
Wohlfeld, Krzysztof/B-4489-2014
Schmitt, Thorsten/A-7025-2010
Mufti, Nandang/F-1603-2010
Mufti, Nandang/O-7971-2019
}},
ORCID-Numbers = {{Haverkort, Maurits W./0000-0002-7216-3146
Palstra, Thomas TM/0000-0001-5239-3115
Moretti, Marco/0000-0002-9744-9976
Benckiser, Eva/0000-0002-7638-2282
Ghiringhelli, Giacomo/0000-0003-0867-7748
Nugroho, Agustinus Agung/0000-0002-1785-4008
Wohlfeld, Krzysztof/0000-0002-6524-8264
Sala, Marco Moretti/0000-0002-9744-9976
Wohlfeld, Krzysztof/0000-0002-6524-8264
Mufti, Nandang/0000-0002-8260-8495
Mufti, Nandang/0000-0002-8260-8495
Blake, Graeme/0000-0001-9531-7649}},
Funding-Acknowledgement = {{DFGGerman Research Foundation (DFG) {[}SFB 608]; U.S. Department of
Energy, Office of Basic Energy Sciences, Division of Materials Science
and EngineeringUnited States Department of Energy (DOE)
{[}DE-AC02-76SF00515]; Alexander von Humboldt FoundationAlexander von
Humboldt Foundation}},
Funding-Text = {{The XAS and RIXS measurements were performed at the ADRESS beamline of
the Swiss Light Source using the SAXES instrument jointly built by Paul
Scherrer Institut (Switzerland), Politecnico di Milano (Italy), and
Ecole polytechnique federale de Lausanne (Switzerland). The authors
thank N. Hollmann, L.-H. Tjeng, and L. Braicovich for fruitful
discussions. This work was supported by the DFG via SFB 608 and
partially by the U.S. Department of Energy, Office of Basic Energy
Sciences, Division of Materials Science and Engineering, under Contract
No. DE-AC02-76SF00515 and by the Alexander von Humboldt Foundation.}},
Number-of-Cited-References = {{80}},
Times-Cited = {{18}},
Usage-Count-Last-180-days = {{4}},
Usage-Count-Since-2013 = {{78}},
Journal-ISO = {{Phys. Rev. B}},
Doc-Delivery-Number = {{254IY}},
Unique-ID = {{ISI:000327159700001}},
OA = {{Green Published}},
DA = {{2020-12-22}},
}
Comments are closed