

Infinite-layer nickelate superconductors studied with Resonant Inelastic X-ray Scattering

International Workshop on Photoionization & Resonant Inelastic X-ray Scattering Ascona, Switzerland, July 21st – 26th, 2024

CHALMERS UNIVERSITY OF TECHNOLOGY

Barišić, N. et al., Proceedings of the National Academy of Sciences of the United States of America. 110. 10.1073/pnas.1301989110.

- Highest superconducting ${\rm T}_{\rm C}$ at atmospheric pressure
- CuO₂ planes amplify electron-electron interactions
- Cu²⁺ has 3d⁹ configuration (S = ½), but not conductive
- Planar square Cu-O coordination: CF
 distortion

22/07/2024

• Tc around 90 K

Chen et al., Physical Review B, 87 (2013)

- Ni¹⁺/Ni²⁺ mimic Cu²⁺/Cu³⁺
- Spin ½, same configuration 3d⁹/3d⁸; NiO₂ planes
- T_c around 10 K, thickness ~ 10 nm
- Infinite-layer phase, obtained by apical oxygen deintercalation (topotactic reduction): CaH₂ powder
- Self-doping from RE: nominally undoped samples are not perfectly insulating and may show superconductivity

Li et al., Nature, 572(7771):

Dr. Daniele Preziosi

22/07/2024

624627, 2019

Phase diagram

- Many different regimes often competing with each other, e.g. magnetism and superconductivity
- Doping: AF destruction, SC rise
- Magnetic excitations (spin waves) can be an indirect probe of SC

Hubbard model

Useful to describe the behavior of doping holes

U = Mott-Hubbard energy of hole Δ = Charge-transfer energy of hole

Materials classification according to these: Zaanen et al., Physical review letters, 55(4):418, 1985 In cuprates, usually $\Delta < U$: hole transfer to the ligand is favored $(3d^9L)$

Hole delocalization along neighbors:

Zhang-Rice singlet Chen et al., Physical Review B, 87 (2013)

Conversely, for NSNO it is $\Delta > U$: strong hole localization on the metal

Resonant Inelastic X-ray Scattering (RIXS)

Damped Harmonic Oscillator (DHO) fitting

Magnetic excitations : Nd_{1-x}Sr_xNiO₂ (NSNO)

- Excitations compatible with spin-¹/₂ • AFM magnons on a square lattice
- As in cuprates, overdamping upon doping
- Unlike in cuprates, energy softening and mild decrease in spectral weight
- Attributed to strong localization of doping holes on Ni sites

•

Lu et al., Science 373, 213-216 (2021)

Magnetic excitations - NSNO

Orbital

0.04

0.02

0.2

0.4

Energy loss (eV)

- The samples were realized by Dr. Daniele Preziosi and Guillaume Krieger (Institut de Physique et Chimie des Matériaux, Strasbourg, France) by **RHEED-monitored PLD**
- T = 20 K, resolution 39 meV ca.
- Incident energy: Ni¹⁺ L3 edge
- π incident polarization

Legend

Clearly dispersing feature @ 100-200 meV, which disappears with doping

Polarimeter analysis

Undoped NNO

- ESRF (ID32 beamline) is currently the only facility in the world allowing such an analysis
- Graded multilayer mirror, with $R\sigma \neq R\pi$

- Spin-flip nature is confirmed: polarization direction of incident light is rotated
- Disentanglement from underlying continuum

DHO Fitting trends

- YBCO recent data (July 2023) for comparison; Tc = 87 K
 - Energy softening with doping for NNO is confirmed, in contrast to the cuprate
- Nickelates agreement is quite problematic

A remarkably larger value of U = 11/t = 4.4 eV is found for nickelates with respect to cuprates

Conclusions and discussion

- RIXS analysis of magnetic excitations dependence on doping in nickelate
- Comparison with cuprates: opposite energy behavior is confirmed
- Polarimeter analysis: disentanglement of the peak from the underlying excitations (mainly charge continuum)
- Development of a new, Hubbard-based susceptibility model, allowing a direct tuning of the main energy parameters
- First result: U = 11|t| in nickelates, while U = 6|t| in cuprates. What about Δ ??
- Submitted paper

(available on arXiv):

Spin excitations in $Nd_{1-x}Sr_xNiO_2$ and $YBa_2Cu_3O_{7-\delta}$: the influence of Hubbard U

F. Rosa,^{1, *} L. Martinelli,^{1, †} G. Krieger,^{2, ‡} L. Braicovich,³ N.B. Brookes,³ G. Merzoni,^{1, 4} M. Moretti Sala,¹ F. Yakhou-Harris,³ R. Arpaia,^{5, 6} D. Preziosi,² M. Salluzzo,⁷ M. Fidrysiak,⁸ and G. Ghiringhelli^{1, 9, §}

https://arxiv.org/abs/2406.09271

Acknowledgements

Prof. Giacomo Ghiringhelli Prof. Lucio Braicovich Dr. Leonardo Martinelli (now Univ. Zürich) Prof. Marco Moretti Giacomo Merzoni Maryia Zinouyeva

Dr. Nick Brookes

Dr. Riccardo Arpaia (YBCO samples)

CHALMERS

Dr. Marco Salluzzo

IPCM Institut de Physique et Chi

Institut de Physique et Chimie des Matériaux de Strasbourg Dr. Daniele Preziosi Dr. Guillaume Krieger (NSNO samples) 22/07/2024